Yes, I do know something about PPE.
The type of respirator that I am wearing in the photo is designed to protect the wearer from chemical agents, mostly, although there are biological filters available. It has unidirectional airflow. That means that the air that I would breathe in would be pulled through a series of filter cartridges (the round canisters on the sides) in order to remove the potentially offending compounds. After inhalation, a valve would close off the incoming air (ingress) and my exhaled breath would exit via another one way valve (egress), which you cannot see but it is located in the middle of the canisters directly in front of my mouth. Of course, this was used with other head and body protection since ALL physical contamination had to be guarded against.
This kind of respirator required both fit and physical certification. I had to be certified on an annual basis to show that my lungs were capable of breathing with this apparatus since the pressure differential was great. That means, I had to be able to suck in the air through the filters as well as deliver out through the valve. Lung capacity was very important; it was NOT a normal breathing experience. You also had to take periodic breaks, as well as a thorough and careful decontamination after each use. The respirator worked only as long as the filter cartridges were effective. They could reach a saturation point or a point where the cartridge was spent and beyond that there would be no protection.
The idea of “masks” on people did not suddenly appear in March of 2020. The usage of face protection with infectious diseases has been well studied, especially with influenza. Do not forget, the mechanics of these two viruses (CV/IF) are essentially the same so what works or doesn’t work for one is the same for the other.
The understanding has been that a “mask,” and that term usually refers to either a SURGICAL mask or N95 mask, has no benefit in the general population and is only useful in controlled clinical settings. Further, it has been considered a greater transmission risk than a benefit in the general population. If people still have a memory, you may recall that this was still the advice in February 2020. That understanding has not changed and I will explain why.
The term “mask” by itself means nothing. It is like saying “car.” You have to identify it more specifically because there are many different types and varieties, just like cars. So, for this essay, I will use two terms as follows:
Face Coverings: In this category I will include homemade cloth, dust, non-fitted utility, custom stylish, and any other common “mask,” i.e. something that is intended to cover your mouth and nose and that is by and large used in the general population (because they are cheap and inexpensive).
Mask: In this category, I am referring specifically to the SURGICAL mask and N95 mask (which is recommended for use in clinical settings by health care workers). If necessary, I will specify between them.
One of the big mistakes by modelers is the concept of a face covering or mask as a “barrier.” I see many references to so-called “experts” who make this claim. This is completely false. No face covering or mask is a barrier. Either they do not know what they are talking about or they are misleading people.
Masks and “Face Coverings” ARE:
FILTERS, not barriers . They FILTER only the things that they are designed to filter , to a level of efficiency based upon design, usually not at 100% efficiency. For example, the N95 mask is designed and rated to filter particles greater than 300 nm at 95% efficiency (note: there are masks with greater efficiency than 95%, such as the N99 and NHEPA, but these are very expensive).
Bidirectional, or two-way street flow (unlike my respirator above). That means the air is intended to go in and out through the same place – breathe in, breathe out. The filtering ability affects both ingress and egress, but MOST are intended to be used towards ingress, i.e. to protect the wearer (Surgical masks are the exception).
Designed for normal breathing patterns, not exertive force (although the Surgical mask has a pressure rating). This is an important point!
NOT designed to filter infectious agents but rather inert particulates (except the Surgical mask which is intended to preserve a sterile/sanitary operating field).
Designed for minimal usage time. They are NOT intended to be stuck on your face for hours.
I understand the psychological crutch that people feel with something covering their mouth/nose. I am sorry, but that is a false sense of security. Perception is NOT reality, just like the neutrino. The mind says that you have some solid thing covering your mouth and nose but that is not really the case, it is porous; things get through (or go around)..
I could spend time on the viral transmission ineffectiveness of the variety of face coverings and fitted masks based upon the material, pore size, non-fit, etc., as well as the studies. I will say that there has been only ONE type of mask, the SURGICAL mask, which has shown any ability to reduce, not eliminate, virus transmission because it is actually rated to a 100 nanometer pore size AND it is rated for ingress and egress. But, the SURGICAL mask is not intended for use outside of a controlled, sterile hospital surgical field where its use and function can be controlled. It has limitations.
In Part III above, the expulsion of the virus into the environment was examined. So, what happens if a person wears a mask/face covering? There are two different views of how the mask operates depending on whether it is ingress (protecting the wearer) or egress (protecting the environment). But, both add up to more or less the same thing.
First, what happens on EGRESS. We will look at droplets because most face coverings will not stop an aerosol and the 2020 propaganda has been focused on droplets.
Assuming that a person is shedding virus and they produce droplets that contain hitchhiking virus, and assuming the face covering actually stops ALL droplets (best-case scenario), the following molecular pathway will likely occur:
The droplet will lose its moisture. The timing may be different than just going out into the environment but moisture will be lost. However, the expelled droplets may accumulate faster than evaporation. If that happens, the facial covering starts to become saturated with moisture, mucus, cellular debris, bacteria, etc. as well as virus molecules.
The virus molecule DOES NOT EVAPORATE and no matter what happens as far as the droplet is concerned, the virus is now on the face covering, at least initially. This means that the face covering is now contaminated and is a possible source of transmission, both contact and airborne.
The virus is not somehow magically “glued” to the mask but can be expelled, whether or not there is still moisture. This can happen the next time a person breathes, speaks, coughs, sneezes, hisses, grunts, etc. So, the virus can be expelled out INTO THE ENVIRONMENT from the face covering.
So, the face covering acts as an intermediary in transmission. It can alter the timing of the virus getting into the environment, but it now acts as a contact source and airborne source; virus can still get into the environment. Since we know that the stability is good on most covering and mask materials, it does nothing to break down the virus until the covering is removed and either washed or discarded (appropriately).
Here is an important point, as more virus molecules accumulate, more are expelled. The face covering is not some virus black hole that sucks the virus into oblivion.
Second, what about INGRESS?
What works for egress works for ingress. So, if a person is wearing a face covering and they encounter virus, aerosols, or droplets, the virus and aerosols will likely penetrate. If the droplet is stopped, the surface is now contaminated. This means that if the surface of the covering touches the mouth or nose, you can become contaminated, i.e. infected.
This is a common sight with most face coverings, including the “stylish” coverings that people are wearing (I often see the covering moving back and forth against their mouth and nose even as they breathe, like a diaphragm), as well as with the cheaper dust masks and homemade cloth masks. If you inhale, you can become contaminated. If you touch the face covering, such as pulling it up and down, you can become contaminated.
Further, because the surface is contaminated, a person can also expel the virus back out into the environment just as with egress. This can be done by talking, breathing, coughing, etc.
Stopping a *droplet* is NOT the same as stopping the virus!
This molecular evaluation only assumed the best case contact scenario; that is, 100% contact between the face covering and any virus particle that may be encountered. I have NOT examined low efficiency coverings, inappropriate use and handling, non-fit (air will circumvent the covering and go around it since air flow follows the path of least resistance – where the air goes so does a virus). I have NOT examined the eyes or ears as entry points. I have NOT examined the other modes of molecular movement on the surface of face coverings, such as osmosis. I have NOT examined the almost 100% misuse of any covering by the population at large simply because they have not been trained and have been misinformed and are using ineffective coverings.
It boggles my mind when there is some notion that by wearing a face covering you are actually doing a “service” to your neighbor and therefore everyone has to protect everyone by this. Actually, the opposite is true. You are now becoming an additional potential source of environmental contamination. You are now becoming a transmission risk; not only are you increasing your own risk but you are also increasing the risk to others.
To better illustrate, let’s look at my respirator above. If I had been exposed to the molecule that I described, the filters would have protected my breathing function (my other protective equipment such as gowns, hoods, etc. would protect the rest of me). But, the respirator surface would have been contaminated (as would the other gown surfaces). If I had gone out into an uncontrolled environment with that respirator (and/or gown, etc.), I could have released those molecules into the environment endangering any person, possibly fatally. I had to de-gown and decontaminate, very carefully, in a controlled environment to prevent that possibility. Even though I had been protected, I was still a risk to others.
Before March 2020, the standard Good Respiratory Practice (GRP) was to cover your mouth/nose when coughing or sneezing. It is especially effective if you use a tissue or handkerchief as a receptacle and cup your hand around them. The hand now actually DOES serve more as a barrier.
Plus, you will more likely remove the potential virus molecule from the environment by proper disposal of the tissue or washing the handkerchief. That is a practice we should be getting back to. I see people now who believe the misinformation and do nothing to shield their cough or sneeze because they believe that wearing a face covering is a barrier on its own. This is not good. So, at the very least, cover your face covering with your hands if you cough or sneeze!
I cannot tell people to not wear a face covering. I chose not to wear face coverings for two reasons, the first is all of the above, and the second is that I have experienced this virus. When I see people with them, I think of virus heaven. But, I am also not afraid because this virus does not frighten me.
I cannot tell people not to erect plastic sheets. But, when I see them, I see a virus motel-check in, stay a while, and then leave. This concerns me more because of the much larger surface area that can act as a virus repository. I have actually advised some places that have done this to either disinfect regularly, or move to glass where disinfection is easier. If there is virus stuck to these surfaces, there is both contact risk and expulsion risk back into the environment.
My view of dealing with the virus is at the molecular level. Do what we can to actually deplete the molecule, not give it stability.
We cannot eliminate this or any other upper respiratory virus. Maybe someday we can advance our immunological techniques to the point that it might be possible to make it a minor player in humans, but we are not there yet. But, we can defend against it by our immune systems and by trusting those with stronger immune systems to protect the weaker. Despite the propaganda, herd immunity was the standard before March 2020; it is not a “fringe” concept.
Here are some important points to consider:
People who have experienced this virus do NOT need to wear face coverings, period.
In the open environment, no one should be wearing face coverings. This is the one place where we can get an assist from nature to help reduce the virus molecules. Considering that less than 5% of transmissions have been associated with open environments (and identifiable activities not random encounters), the risk is truly small.
A face covering may be useful when visiting an at-risk elderly person or in a controlled health care setting such as a hospital or nursing home. But, I think that these should be dispensed by trained personnel and should be focused on using Surgical masks wherever possible. The protection is not so much from viruses but face coverings may be more effective in preventing the spread of bacteria and fungi.
Children should not be wearing face coverings. We all need constant interaction with our environments and that is especially true for children. This is how their immune system develops. They are the lowest of the low risk groups. Let them be kids and let them develop their immune systems..
The “Mask Mandate” idea is a truly ridiculous, knee-jerk reaction and needs to be withdrawn and thrown in the waste bin of disastrous policy, along with lockdowns and school closures. You can vote for a person without blindly supporting all of their proposals!
There may be other health risks associated with continued use of face coverings. While this is anecdotal, I have many physician acquaintances and they are all reporting increases in conditions that may be associated with face coverings, such as facial skin infections, nose/throat and sinus infections, even anxiety conditions. An area of concern is the change in breathing patterns that can be directly associated with face coverings. I train regularly. The only time that I wear a face covering is to gain entrance to the public gymnasium where I train (because it is required). The mask is discarded immediately when I start training, as most other people also do. The staff members do not make a fuss because they understand the dangers of doing exertion with a face covering.
We also do not know enough about the possible consequences of forcing whole populations to adopt face coverings for extended periods. There may be both health and social consequences that we cannot consider at this time. Humans have developed as creatures whereby we interact with our environment. Our whole upper respiratory tract has developed immense defensive systems because of that. I am worried personally about “unnatural selection.” This is when human actions force a direction of evolution that would not otherwise occur. Often, the result is not good. But that is a whole different subject that needs to be considered.
I think that people can see how truly complex and difficult it is to deal with a nanoparticle. It is something too complex for modeling, at least on the environmental scale. It should be clear that humans are only a small part of the equation.
Stopping humans from being human will not stop the virus from being a virus!
We certainly should not have let modeling be experimented with on a worldwide scale directing policy that we had no idea of the outcome; but we did. It should be readily apparent by this time that all of the lockdowns, masking, distancing, closures, etc. have had no effect on the virus. It is time to reverse course.
Modeling could be useful in evaluating conditions in very limited and controlled settings. For example, it could be helpful to design infectious disease care units in hospitals. We could use modeling to examine our knowledge and use of air-handling, people movement and interactions in combination with molecule destruction, PPE, etc. to maybe develop better procedures to protect health care workers but also help reduce viral loads of patients.
For example, would a simply designed, single pass individual exhaust unit that carries the expired air from a patient to a chemical scrubber help reduce the viral load of the environment? Could it also help the patient by reducing the local viral and bacterial load? Could it help reduce or eliminate the molecule from those environments? These and others are questions that can be modeled and then tested. Then, maybe it can be tried on a pilot scale. If that works, maybe we can expand the scale, fine tuning as we go, and maybe reach a point where it works well and it can be used on a larger scale. That is how science works. Start small, gain understanding, finetune, and expand. You do NOT use the whole world as a laboratory on the first shot!
It is time for human beings to be human beings again. Stop trying to lay blame and guilt on people for a natural virus.
If governments want to be helpful in reducing severe disease and deaths, imposing more laws and restrictions is not the answer. Rather, focus on educating people on how to better maintain their immune systems. Encourage healthier lifestyles through education and wellness programs, especially in the less fortunate of our society. Provide or encourage businesses to consider better sick leave alternatives for people in ALL jobs/vocations so that people are not driven by the choice of work to live or stay home and be sick.
The healthy people in our society should not be punished for being healthy, which is exactly what lockdowns, distancing, mask mandates, etc. do. This goes completely against the principles on which the United States of America was founded. We have lost the meaning of “Land of the Free, Home of the Brave” to “Land of the Imprisoned, Home of the Afraid.”
*
Note to readers: please click the share buttons above or below. Forward this article to your email lists. Crosspost on your blog site, internet forums. etc.
Roger W. Koops holds a Ph.D. in Chemistry from the University of California, Riverside as well as Master and Bachelor degrees from Western Washington University. He worked in the Pharmaceutical and Biotechnology Industry for over 25 years. Before retiring in 2017, he spent 12 years as a Consultant focused on Quality Assurance/Control and issues related to Regulatory Compliance. He has authored or co-authored several papers in the areas of pharmaceutical technology and chemistry.
Featured image is from AIER